Entanglement renormalization and topological order.
نویسندگان
چکیده
The multiscale entanglement renormalization ansatz (MERA) is argued to provide a natural description for topological states of matter. The case of Kitaev's toric code is analyzed in detail and shown to possess a remarkably simple MERA description leading to distillation of the topological degrees of freedom at the top of the tensor network. Kitaev states on an infinite lattice are also shown to be a fixed point of the renormalization group flow associated with entanglement renormalization. All of these results generalize to arbitrary quantum double models.
منابع مشابه
Tensor-entanglement-filtering renormalization approach and symmetry-protected topological order
entanglement-filtering renormalization approach and symmetry-protected topological order. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. We study the renormalizat...
متن کاملLocal unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order Citation
Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters...
متن کاملIdentifying topological order by entanglement entropy
Topological phases are unique states of matter that incorporate long-range quantum entanglement and host exotic excitations with fractional quantum statistics. Here we report a practical method to identify topological phases in arbitrary realistic models by accurately calculating the topological entanglement entropy using the density matrix renormalization group (DMRG). We argue that the DMRG a...
متن کاملTopological transitions from multipartite entanglement with tensor networks: a procedure for sharper and faster characterization.
Topological order in two-dimensional (2D) quantum matter can be determined by the topological contribution to the entanglement Rényi entropies. However, when close to a quantum phase transition, its calculation becomes cumbersome. Here, we show how topological phase transitions in 2D systems can be much better assessed by multipartite entanglement, as measured by the topological geometric entan...
متن کاملEntanglement convertibility by sweeping through the quantum phases of the alternating bonds XXZ chain
We study the entanglement structure and the topological edge states of the ground state of the spin-1/2 XXZ model with bond alternation. We employ parity-density matrix renormalization group with periodic boundary conditions. The finite-size scaling of Rényi entropies S2 and S∞ are used to construct the phase diagram of the system. The phase diagram displays three possible phases: Haldane type ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 100 7 شماره
صفحات -
تاریخ انتشار 2008